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The effects of strong magnetic fields on thermal collisions in a vapor are reviewed. Semiclassical and 
quantum-mechanical symmetry properties of the relaxation matrix are established for resonant collisions 
between identical atoms and nonresonant collisions with a structureless partner. The variations with field 
strength of the transfer rates between Zeeman sublevels for R -3 dipole-dipole interaction and R -6 Van der 
WaaIs interaction are obtained with an exact semiclassical computation of the collision matrix. These are 
then compared with those predicted with an approximate formulation by means of the symmetrical 
correlation function for the potential. 

I. INTRODUCTION 

Strong magnetic Helds are of particular interest 
to the study of weakly inelastic collisions in a 
vapor as they offer a very simple means for con­
tinuously varying the energy difference between 
the Zeeman substates of an atom over a con­
siderable energy range (of about fokT currentiy 
obtained with steady Helds). The effects of a 
magnetic Held on the collisional process in a 
vapor are twofold. The parameters describing 
the relaxation are Held dependant. Secondly, the 

. lack of invariance in the system under time re­
versal and spatial rotation produces a breakdown 
of the statistical rotational invariance generally 
satisHed in zero external fields. These effects 
are important when the energy difference between 
levels is about n(Tc>-t, where Tc is the me an 
duration1 of the collision or the correlation time 
of the potential. 

In the following seetions, we will investigate 
the symmetry properties of the relaxation matrix 
in various physical situations in the presence 
of strong magnetic fields using first a semi­
classical and then a quantum-mechanical deriva­
tion with detailed balance. 

Predictions obtained by means of an approxi­
mate theory based on the symmetrical correla­
tion function of the potential will then be com­
pared with exact numerical results for J = 1- J = 0 
resonance transitions and for various kinds of 
potentials. 

Several experimental investigations of collis­
ional excitation transfer between Zeeman sub­
levels in strong magnetic fields have been per­
formed on Hg and Na vapors and will be reported 
in forthcoming papers. They reveal the possibili­
ty of direct measurement of various collision 
parameters such as correlation time and correla-

Hon function, anisotropy of !.J~ potential, and also 
seleetion rules during the c"UIsion proeess. 

U. SYMMETRIES OF THE RELAXATION PROCESS 

A. Symmetry considerations 

The relaxation proeess in a vapor is in general 
statistieally isotropie provided the system is not 
subjeeted to external Helds. 2

•
3 In fact this eon­

clusion requires the fulfillment of additional eon­
ditions, e.g., broad line exeitation and isotropie 
velocity distribution of the atoms. Then the re­
laxation matrix (;m), whieh conveniently describes 
the process, is a scalar in Liouville space. The 
relaxation rates, which are matrix elements of 
(;m) satisfy (in an irreducible tensorial basis) 

(1) 

where gA is the relaxation rate of the (kq) com­
ponent of the density matrix. Of course, notations 
in (1) omit many dummy indices, referring to the 
fact that there is usually more than one rank-k 
tensor operator subtending Liouville space. We 
will use this eonvention in the following to simplify 
notation. 

When a vapor is submitted to an external mag­
netic Held, while all other conditions remain 
valid relation (1) no longer holds sinee the re­
quirement of isotropy of the system is not ful­
filled. 4 Moreover, the system no longer posses­
ses time-reversal invariance. Statistical sym­
metries still exist, and result from rotational 
invariance around the Held direction, invariance 
in parity operation, and also from invariance in 
the product of reflections in planes containing the 
field direction and time-reversal operation. This 
last operation, which looks like a dynamical 
symmetry for the system, results from intuitive 
arguments that the field is reversed in each 
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operation, and that their product consequently 
leaves the field unchanged. These are basically 
the main points developed in the following sub­
pections. At first examination, it seems more 
convenient to seek these new symmetry properties 
in a dyadic Zeeman basis (in the direction of the 
field) , but in fact the use of a tensorial irreducible 
basis bunt on Zeeman's is still of great interest. 

As concerns the relaxation matrix for the whole 
system with zero external field, the time-re­
versal operation does not produce any additional 
relations between relaxation coefficients5 when 
they satisfy the isotropy condition (1). But the use 
of time-reversal invariance with some additional 
transformation6 to calculate the result of one 
definite collisional process (within, for example, 
the framework of impact approximation) leads 
to consid~rable simplification of the computa­
tional procedure.7 

Olle must also remark that as the system in a 
strong field is not invariant under the time­
reversal operation, the usual proof of detailed 
balance which supposes the validity of this 
property8 breaks down. 

B. EstabUshing symmetries 

Statistieal symmetry properties of the relaxation 
process in strong magnetic fields may be es­
tablished in two different ways. There is a purely 
quantUln-mechanical treatment which is the only 
cQrrect way of satisfying the laws of conserva­
tion of quantum momentum and energy in the ex­
ternal field. Secondly, there is a semiclassical 
treatment of the collision process in the frame­
work of the impact-parameter approximation. 

In the simple case where there is no external 
field, significant difficulties6 arise in the latter 
method from the partition between internal and 
extern;il (nucleus positions) orbital variables and 
from the t parametrization of the positions. This 
method permits the conservation of neither energy 
nor angular momentum during each collision pro­
cess, and the expression of time-reversal in­
variance depends strongly upon the choice of 
basis.9 Nevertheless, this is in general of litUe 
importance for the final results when the con­
ditions of applicability of the impact-parameter 
approximation are fulfilled. 

For the present problem the nonzero Zeeman 
splitting t:.·E of the levels allow weakly inelastic 
transitions to occur during the collision. A one­
trajectory impact-parameter treatment obviously 
violates energy- and angular-momentum-con­
servation laws. Therefore the treatment of inter­
Zeeman transitions will be signüicant only for 
t:.E « kT and for large mean values of the mo­

mentum of the partial waves, i.e., essentially 
for collisions between heavy atoms with long-range 
interactions. 

Having recalled these well-known difficulties 
arising from the use of the impact-parameter 
approximation, it is not surprising that with this 
method one obtains symmetry properties that are 
only limiting cases of the true ones obtained with 
a quantum-mechanical derivation and which are 
only valid in the weak-field limit (t:.E« kT). 

C. Semic1assical derivation of symmetry properties 

1. Hypothesis ofderivation 

We suppose that the interaction potential is 
invariant under time reversal and in plane re­
flections around the internuclear axis. 6 Such 
potentials are, for example, dipole-dipole inter­
action between identical atoms and long-range 
Van der Waals anisotropie interaction between 
an excited atom A and a structureless spherically 
symmetrie partner X. More generally, this 
treatment concerns all electrostatic potentials 
which possess these symmetries. 

Moreover, we suppose for simplification that 
the trajectory of the atoms is rectilinear and of 
constant velocity; the results remain valid with 
the proper classieal trajectory, provided the 
impact-parameter direction b is an axis of 
symmetry. 

A frame (xyz) with x and y axes parallel to the 
impact parameter band relative velocity v, re­
spectively, will be associated with a given col­
lision process in space. This frame is derived 
from the fixed frame in space (with the Z axis 
parallel to the magnetic field B) by the rotation 
ot-1(<p, 8,y), where (<p8y) is Euler's angle (fol­
lowing the definition of Messiah).8 

The general form of the interaction potential 
in the fixed frame is then10

-
12 

V= qf(R) I: (_)QIU;l~l a: (U(2)® T(2»{O) , 

°1 

with (2) 

U(z) = (u fl) ® u (1)(2) , 

and u (1) the unit vector along the internuclear 
axis. In (2), we neglect the isotropie part in the 
internal variables (which is nonzero, e.g., for 
Van der Waals interaction), q is the strength of 
the interaction,1l·12 andf(R) its R dependence. 
A rank-2 tensor on the internal coordinates and 
on the orbital variables (U (2», V is a scalar for 
the whole system. The W:} depend on (<p8y) and 
on x = vt/b, which in reduced variables results 
from the t parametrization of the potential. The 
{U;} have simple expressions in the (xyz) col­
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Hsion frame l3 which are readily obtained from 

U"~ (<p, 8, y,x) L u:2(.x)R~:!1 (<p8y). (3) 
"2 

Explicit expressions are given in Appendix 1. 

As the interaction is of purely orbital nature 
(exchange interaction is excluded), T (a) is a 
rank-2 tensor built on the orbital angular mo­
mentum Lfor A *-X collisions, and on the electric 
dipole moments PlB and pm of the atoms for 
A *-A resonant collisions. It follows then that 

(4) 

2, Relations between semiclassical collision matrices 

The analysis is done for A *-A collisions 
(J =1- J = 0 transitions) and A*-X collisions (J = 1 
exeited state). 

The evolution during the collision proeess is due 
to the interaction potential and the Zeeman 
Hamiltonian (assuming no LS deeoupling effeets). 
In the interaction pieture, Sehrödinger's equation 
is 

i:!.x 11jJ(x» =P(<p, 8, y,x)IIjJ(.x» , (5) 

with 

P(<p, 8, y, x) =e i Il J B%V(.x)e- i ijJß% 

= q f(R), L (_)'1 U:' 1e i 1l'1%TJ~). (6) 

"1 

~ (<p8y) is the eollision matrix assoeiated with 
(5). To solve the relaxation problem one thus 
needs to know 2: (<p8y) for eaeh orientation of the 
eollision plane relative to the Held. 

In the ease of A *-A eollisions, (5) is invariant 
under the exchange of atoms. Then the symmetrie 
and antisymmetrie states evolve independently 
in their respeetive + P and -P potentials. In that 
sense, a eomplete formal analogy exists between 
A*-X andA*-A eollisions forJ=1-J=O transi­
tions. l2 

The basic idea of the investigations of symmetry 
properties is to seareh for relations between eol­
Hsion matriees (in the fixed frame) for different 
collision processes in space. These relations are 
establishedll and interpreted in the Appendix and 
used in Sec. II C 3. 

3. Symmetry oi the relaxation process 

The semiclassieal relaxation matrix is defined 
following usual eonventions such that14 ('3lT) is given 
by 

('3lT)P= J Jf(V)V2dVbdb(2:jp~1(<P8Y» -pö ilJ (7) 
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p being the density matrix, andf(v) the (isotropie) 
velocity distribution. The braekets indieate angu­
lar average over the angles of band v. It is more 
eonvenient to eharaeterize ('3lT) by means of its 
matrix elements in a {T:} or standard 
{IJM)(J'M'I} basis, giving 

15 "Ci.' = «ad(mt)!a'» . (8) 

a. Symmetries for A *-X collisions. The prinei­
pIe of the deduetion is to use Eqs. (Al)-(A5) in 
taking the angular averages in (7) and (8). This 
gives after a little algebra the following sets of 
relations: 

llR; =Ö ,aR'" g(rr'){J>/>') Ö g(TT')(J>P')
g qq qq oq , 1'-1" .p_p' , (9a) 

g:~' =15:''', g(Tr')(J>/>') = g(J>/>')(TT') , (9b) 

g:k' =g~~", g(TT')(J>/>') = g(T'T)(J>' J»* , (ge) 

g:lI' (+) =(_)k+k'g:k' (_), 
(9d)

g<rr') (J>/>') (+ ) ;= g(-T -r')(-/>-/>')* (_) , 

grt =g~O= 0, L g(TT)(J>/» = O. (ge) 
P 

Some relations mayaiso be dedueed for the shift 
and broadening of the optieal lines. 12 

Relations (9) ean be interpreted as follows. 
(9a) is the expression for rotational invarianee 

around the Held. 
(9b) expresses the invarianee in the product of 

time-reversal operation and XOZ -plane reflee­
tions. 15 

(ge) is a general relationl6 due to the Hermitieity 
of the density matrix. 

(9d) is not the expression of a symmetry prop­
erty, but permits one to relate the parameters 
of relaxation in the two eases in whieh the relative 
positions of the 2: and TI potential-energy eurves 
of the system are inverted. The existenee of this 
relation is elosely related to the partieular form 
adopted in (2) for the anisotropie part of the po­
tential, whieh permits one to interpret (-V) as the 
potential for another physieal situation. 12 Also 
note that the derivation of this relation in the 
framework of impact-parameter theory with 
straight-line trajeetories supposes that the iso­
tropie part of the potential is not usedfor tra­
jectory calculations. If it is used the very simple 
situation whieh obtains here (where the relaxation 
depends only upon the anisotropie part of the po­
tential) will no longer be eorrect, and (9d) breaks 
down. Of course, in a fully quantum-mechanieal 
treatment such an approximation does not apply, 
as the effeet of the potential on the wave function 
would be included. 

(ge) expresses the eonservation of population 
during the eollision process and comes from the 

http:tions.15
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unitarity of ~ matriees. This supposes that the 
perturber X is struetureless and eannot be strongly 
perturbed during the eollision proeess. 

b. Symmetries jor A *-A collisions. A natural 
partition of the system between two classes eor­
responding to the initially exeited atoms (class 1) 
and ground-state atoms (dass 2) is generally 
made. l4 One always supposes that the density of 
exeited atoms is small eompared to that of ground­
state atoms, exeluding e.g. spin-exchange eol­
lisions and eollisions in a saturating laser Held. 

As remarked above, Sehrödinger' s equation is 
invariant under the exchange of atoms. The 
evolution of the system is then equivalent to that 
of the symmetrie states in the potential + V with 
the assoeiated ~(+) eollision matrix and of the 
antisymmetrie states in the potential - V with 
the ~(-) eollision matrix. The evolution of eaeh 
subset is equivalent to that obtained in A *-X 
eollisions. Then the relations of AppendiX I are 
verified by ~ (+). But now, the eollision matriees 
for eaeh class of atoms are given by 

(10) 

where ~~ are not unitary matriees. From the 
definition (8) and relations (Al)-(A5) one then 
deduees the following set of relations for eaeh 
class i of atoms: 

g!:; (i) '" Öqq ,g :11' (i) , 
(l1a)(TT')(J>J>') (i) '" Ö I ,g(rrl)(J>J>')g r-r .P-p , 

g:lI' (i) =g!'II(i} , g(rr')(J>p') (i) =g(J>p'){Tr') , (l1b) 

g!lI' (i) =g~": (i) *, glTT')(J>P') (i) =glr'r)(J>'p)* (i) , (l1e) 

g:lI' (i)= (_)II+II'g!II'(i) , 
(l1d)

g(rr')(J>J>I) (i) = g(-r-r')(-J>-/l')' • 

The interpretation of relations (11) is that de­
veloped in Sec. IIC3b [Eqs. (9)]. But there is no 
equivalenee of conservation laws, as ~ ~ are not 
unitary transformations. Not identical to (9d), 
(l1d) is now a new symmetry property for the 
system. Coneerning the differenee from the situa­
tion in Sec. II C 3 a, the solutions of Schrödinger' s 
equation in the + V (symmetrie states) and -V 
(antisymmetrie states) potentials are simultan­
eously involved in the solution of the physieal 
problem for identieal atoms as expressed in Eq. 
(10). All remarks made on the validity of (9d) 
remain valid, except that in true physieal situa­
tions the isotropie part of the potential is now 
mueh weaker than R- 3 dipole-dipole interaetion 
(main anisotropie part), and the various assump­
tions (straight-Hne trajeetories and impact ap­
proximation) are in general weIl verified.17,lS 

So although (l1d) has no quantum-mechanieal 
analog, 1t will probably be well verified with a 
quantum-mechanieal treatment of the problem 
for not-too-strong magnetie Helds (ÄE« kT). 

The collision matrix for the whole ensemble 
of atoms is defined through the action on each 
class separately14 by 

g(l + 2) =g(l) +g(2) , (12) 

thus neglecting the correlation terms [crossed 
~ (+). ~ (-) terms]. This 1s of no practieal im­
portanee sinee quantum-meehanieal indisting­
u1shability effeets are negligible (for long-range 
interactions). Moreover, eorrelations do not 
have any physieal meaning in our model, where 
atoms are far from eaeh other before and after 
eollision. 

The eoefficients g(l + 2) saUsfy relations (11) 
and one additional relation, 

gg"(l + 2)= g~O(l + 2) =0, (13) 

which expresses the eonservation of population 
for the whole system. 

The broadening and shift of the optieal lines 
are only conneeted to the ~ (+) eollision matrix 
for the symmetrie states ll; this is a well-known 
result in super-radianee theory when one neglects 
retardation effeets. 19 

These various relations show that the relaxation 
in high magnetie fields is strongly anisotropie. 
Some of the relations (9) take a form very similar 
to those obtained when the system is subm1tted 
to an external electrie Held/sol6 the differenees 
eoming from the rather different behaviors of E 
and B under parity, plane refleetions, and the 
time-reversal operation.8 

D. Generalization for A *-X collisions 

Relations (9) can be generalized following the 
methods of the Appendix to various situations, in­
cluding the ease of several fine-structure levels. 
In the case of a purely orbital interaction po­
tential, (2) may be written in the form 

v=qj(R)L L b(LSJJ,)(-)qlU;q/.rIT~21, (14) 
N' ql 

the {b} being proportional only to the redueed ma­
trix elements of the various operators and satis­
fying b =b*. 

In the general ease, the unperturbed Hamil­
tonian of the system is 

(15) 

Several situations must be considered according 
to the relative orders of magnitude of the LS 
strueture, magnetie interaction, and interaction 

http:effeets.19
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potential. 20 We always suppose that the various 
energy differences are small compared to kT. 

1. Strong [·S coupling 

Jf AL' S»Hmagn - T; 1 one can consider each 
fine-structure level separately in the interaction 
potential (14). Equations (9) are valid provided 
the proper phase factors E = ± 1 are included, and 
hold exactly for population transfer. 

Jf Hmagn - AL' S» T; 1, a partial decoupling of 
Land S due to the Held occurs. The eigenvectors 
of (15) are then 

IJM) = L d(LSJ')IJ'M) . (16) 
J' 

Transitions which are usually weak (as T;1« Ho) 
may occur via the mixing of fine-structure sub­
levels. 5

•
20 Since Ho does not depend linearlyon 

M and the energy differences between the states 
(JM) (JM') and (j -M), (J -M') are not the same, 
(9d) is not valid. The other relations (9) are valid 
in the basis of eigenvectors IJM). 

2. Paschen-Back regime 

Jf T; 1_ Hmagn »A L' S, the problem is simplified 
by the purely orbital nature of the interaction po­
tential. During the collision process which es­
sentially perturbs L, S is precessing around B. 
Then symmetry properties (9) hold for M L , and 
M s =Ms· 

3. Intermediate regime A [. S'V HMAGN 'V l' / 

There is inter- and intramultiplet transfer by 
collision, Jf decoupling effects are still weak, 
the Zeeman approximation of (15) is valid and the 
derivation of Sec. nc may be used. Relations (9) 
are valid in J, but also hold for J' *J (inter­
multiplet transitions) with convenient phase fac­
tors. 

Jf decoupling effects are not negligible, (9d) 
does not hold as in Sec. nD 1. Between the eigen­
vectors IJM) of Ho (9a) and (9b) are still valid, 
giving 

(17) 

the demonstration of which needs some modifica­
Hon in the algebra of Appendix I, as the transfor­
mations of IJM) in T(~) are not those of IJM).B,Zl 

Of course, these conclusions are valid for long­
range interaction. Practical physical situations 
are in general intermediate cases of the pre­
ceding, as the situation may change drastically 
with the values of b, v, and t, and thus requiring 
a more accurate analysis using, e.g., Hund's 
coupling schemes for each collision process. Z2

• 
Z3 

E. Generalization for A":A collisions 

We consider the case of identical atoms pos­
sessing a structure both in the ground (j) and in 
the (J) excited states. We suppose the validity 
of the Zeeman approximation for the magnetic 
Hamiltonian. Borne of the relations we derive 
are not valid if one includes the decoupling of 
LS structure due to the field. 

1. Expressions 01 dipole-dipole interaction 

Dipole-dipole interaction is still of the general 
form of (2), where the operator UT(2) is given 
by (4) and corresponds to the {(jlJ;)l, (JJ;)l; 2q} 
coupling scheme.24 The alternative coupling 
scheme is {(jvJJF1; (J1,jz)FzV; 2Q} and cor­
responds to F IF~T2 operators constructed by 
successive coupling of the angular momentum of 
the two atoms, in the initial and final states. One 
then obtains a unified-atom description of the 
problem, making clear the analogy between A *-A 
andA *-X collisions. The two bases are related 
by a unitary transformation8 ,25 with real coef­
ficients. 
a. Remarks. The second coupling scheme is of 

interest for expressing symmetry properties in 
zero field. The expression of rotational invariance 
is straightforward, since one is dealing with one 
unified atom system, so that the results for A *-X 
collisions may immediately be transposed.24 The 
first coupling scheme is useful for describing the 
perturbation of each class of atoms, since a 
partial trace is readily obtained in this repre­
sentation.24 

For a J = 1- j = 0 trans ition, the two bases coin­
eide exactly, and so have convenient properties 
both for expressing symmetries and for dividing 
the system between each class of atoms. The 
problem is almost equivalent to that of collisions 
with a structureless partner, since the ground 
state of the atoms is spherically symmetric. 

2. Zeeman Hamiltonian 

The Landll factors of the excited and ground 
states are ge and gf' respectively, and 

Hz =!lBB [ge (J)J. +g,(j)j.] • (18) 

In the IJM ,jm) uncoupled basis Hz is diagonal, 
but not in the I(Jj)Fm) coupled one unless ge = gf' 

3. Exchange 01 atoms 

The interaction potential (2) is invariant under 
the exchange of atoms. The symmetric and anti­
symmetrie states under exchange, which are just 

I±JM,jm) =2- 1/2 [IJM,jmh Ijm,JM)] , (19) 

http:sentation.24
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evolve independently in the + V and -V potentials, 
respectively. 

4. Derivation ofsymmetries 

a. Special case 0/ g, =gf' Invariant under the ex­
change of atoms, Hz is diagonal in the coupled 
I±, FMF ) symmetrized basis. The problem is thus 
completely equivalent to that of collisions with a 
structureless partner, and so Eqs. (9) are valid 
in the I± FMF) basis. The derivation of the rela­
tions in the uncoupled basis is straightforward, 
but the situation is of Httle physical interest. 

b. Weak fine structure in ground and excited 
states (A Tc« Ii). The Zeeman Hamiltonian is then 

Hz'" /.laB. (L+ i) + 2/.la B· (8 +s). (20) 

Since the ·interaction (2) is of purely orbital 
nature, the spin (8 + s) of the system is not af­
fected. The orbital part of Hz is diagonal in both 
the decoupled and coupled (Ll)G representa­
tions. All symmetry properties referring to the 
orbital part of the wave function for the two-atom 
system are obtained from the derivations of 
Sec. II C 3 (in the coupled basis). As the field 

( J 'M' ., 'Ipl JM . ) - 3 (J'llplli><f11 pli J).± ,Jm ± ,Jm-'fR3[2J'+lP/2[2j'+lp72exp~WXgfm-m+ge ­

xL: (-)QU:'.(epOYif)(l1QlQ212q)(j1mQlIJ'M')(JlMq21j'm') , (231 
·Ql"2 

with 

(a'J'llp(llll aj) =öss ,(n' L'IIPllnl) (_)l+J+L' +5 (2j + 1)l/2(2J1 + l)l/2{~' ~ 51} • 

effect will be important for /.laB- T;\ this im­
plies that the system is in the Paschen-Back 
regime and no recoupling of Land S is needed 
after collision. For 1'" 0 ground states, the sym­
metries are those given in (11). 

c. General case . As Hz is nondiagonal in the 
coupled basis, we use the uncoupled one and 
some minor modifications of the demonstrations 
of Sec. UB. The relations between {U;} coef­
ficients are those given in the Appendix. The 
transformation in rotations and plane reflections 
of the uncoupled basis are given by21 

(y)lJM,jm) =e-iy(AI+"'l IJM,jm) (21)Rz 

and 

T(~)IJM,jm) =(_)"+i- m-Me2i HM+m) IJ -M,j -m) . 

(22) 

Using the invariance under exchange of atoms, we 
split Schrödinger's equation into two differential 
sets for the + V and -V potentials, the associated 
collision matrices being L::(+) and .:0(-), connected 
by (10) to L:: 1 and L:: 2' The matrix elements of the 
interaction potential in the interaction picture are 

{. 	 [ (' ) (M' M)]} 

Using (L Ilplll) *= (_)I-L(lllpIIL), one deduces that 
(L Ilplll)(lllplIL) is real. Then relations (Al)-(A5) 
are still valid, and one can deduce the following 
relations for each class of atoms, where the g 
are obvious generalizations of (8) for the two-atom 
system: 

(24a) 
( . , .,) ( 

g Ml"'2.1>11>2 Ml"'2,1>11>2) (i) 

=g(Mlm2,1>l1>2)(Mi,ma,l>iI>2) (i) , (24b) 

g(Mi,m2.I>~Pll)(Mlm2.P!P2) =g(l>lPll.Mima)(I>IP2. Ml"'2)* (i) , (24c) 

g(M~m2.pip~)(Mlm2,PIP2) (i) 

= (_)ag<-All-m2,-Pl-P~(-Ml-m2,-PI-P2~ (i), (24d) 

a=L::Ji -L::Mi. 

The (J,j) indices have been omitted for simplicity. 

The interpretation of the relations is as in (11). 
For excitation transfer, one obtained the relations 
by substituting M~ =p;,m;=p;, MI =Pl' and m2 

=Pa into (24). For the relaxation of the whole 
ensemble of atoms, one has, moreover, the con­
servation law 

L: gViMi.,i;m!!)(.flMloi2m2) (1 + 2) O. (25) 
liMi.J2m2 

As (24d) comes from the effect of reflection, this 
relation will not be valid in the case of decoupling 
of Land S due to the field, since (22) no longer 
holds. 

111. 	 QUANTUM-MECHANICAL TREATMENT 
AND DETAILED BALANCE 

A. Derivation of symmetry properties 

Among the various relations established in the 
previous section with semiclassical arguments, 
some have a very simple interpretation using a 
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The mean rates of transfer between the internal 
state a 

4 
and ab of the particles are deduced from 

(33) by summation over the momenta of the in­
going waves. Since f(v 4) is the MaxweH-Boltzmann 
velocity distribution function of the atoms in the 
vapor, one has 

g- ("'I;i)("'a) !f(V)V a dv (35)a a a~b a' 

Then using (33), (34), andE'(Aa)=E'(a), one 
obtains 

- , '" expl~[.gl("'bl-Bf("'a) l/ (kTllg- (A"'aHA"b) (36)g ("'b)(aa) , 

which is detailed balance for a system submitted 
to an external magnetic field. This derivation 
supposes an isotropic Maxwell-Boltzmann velocity 
distribution function, Le., that the collision pro­
cess doej not strongly perturb the velocity of the 
atoms. 

With (a) (Jm) and (ab) = (Jp), (36) gives 

g(JI>JI>HJmJm) e-<;·m)aW/(kT)g( ....JmHUJPl, (37) 

which is of course reduced to (28) when nw«kT. 
This permits one to fix the limit of validity of the 
semiclassical relations deduced in Sec. 11. 

a. Remarks. For excitation transfer between 
two sets (Jm) and (J'm') of levels separated by 
the energy difference M, in zero field time-re­
versal invariance leads to 

g(.1' ",' .1' m' )(.1111.1",) e-[E(J' )·E(n JI (_Tl 

x g (.1-mJ-IIIHJ· -1ft' J'-m" , (38) 

which is not equivalent to (36). If the system 
possesses rotational invariance or invariance in 
plane reflections, this gives 

g<J·m·J'III·)(J"'Jml=g(J',,,,·J·-m'HJmJm'. (39) 

The combination of (38) and (39) produces a new 
relation equivalent to (37), although the hypotheses 
of the demonstration are different and the two pre­
vious relations do not hold separately in a strong 
magnetic Held. 

C. Symmetrizing semiclassical results 

For small values of nw (nw<tokT) and to avoid a 
totally quantum-mechanical treatment, one may 
try to extend the validity of the semiclassical ap­
proximation by introducing proper correction of 
the transfer rates in order to obtain a set of co­
efficients approximately verifying detailed balance. 
We describe such a possibility of symmetrization, 
adapted from the work of Bates26 and of Jamieson 
and Reid,27 which allows the deduction of velocity­
averaged transfer rates satisfying detailed balance. 

But this method of symmetrizing is not unique, 26 
and the main arguments for its use are its simplic­

ity and accuracy for electron-atom collisions.27 

Some aspects of the extension of the validity of the 
semiclassical approximation require a fully quan­
tum-mechanical approach. 

Semiclassical results are obtained for a given 
velocity v of the atoms. The principle of the 
method described here is to introduce into the 
semiclassical result for the probability of transi­
tion between m and p Zeeman sublevels a factor 
which takes into account the fact that the velocities 
v m and v; are different before and after collision. 
The simplest choice is to take v",/v; as a correc­
Hon factor. Associated with the velocity v used in 
the semiclassical calculations, v", and vI> are 
determined by energy conservation in the m-p 
process and by assuming the mean value is v. The 
symmetrized cross section is then 

ä(P.PH"''''' (v .. ) =(vp/v .. )a(;;H",m,(v) , (40) 

and, using a(PPH'.... ' (v) =a(m",HPP'(v), one obtains 

(41) 

which is just equivalent to (33) for the total energy 
E. After velocity averaging, the 1;("''''HPP' coef­
ficients then satisfy detailed-balance expression 
(37). 

To relate the 1; and g (unsymmetrized) velocity­
averaged transfer rates, an approximate expres­
sion can be obtained at the limit nw« kT by de­
veloping the Maxwell-Boltzmann distribution 
function. So doing one obtains 

(42) 

which is of course an obvious way to correct the 
results. 

Symmetrization does not strongly affect rela­
tions (9) and (11). For A *(J = l)-X collisions, one 
has gI 11 )(00' *" g<-1-l)(OO). 25 Then with (42) 

1;(11)(00'/1;(.1-11(00' e-AW/(kTlg ( uHoo, /g<-1-U(ool (43) 

Following the attractive or repulsive character of 
the potential which governs the behavior of g(l1)(ool/ 

g(-1-1)(00',28 symmetrization will increase or de­
crease the effect of the magnetic Held on the ratio 
of the transfer rates. 1Z Of course, the separation 
into two kinds of effects is in some aspects ar­
bitrary, and will not exist with a fuHy quantum­
mechanical treatment of the problem. However, 
if n w«kT, the effect of detailed balance is always 
small and gOlHOOl !g(-l-lHOO' can be observed al­
most free from corrections.28

,Z9 Note that in zero 
field the ratio (43) is just 1. 

For A *-A resonant collisions (J =1 - j 0 transi­
tions) the semiclassical results obey an additional 
relation, (Ud). In this case one obtains after 
symmetrization through (42) 

http:rates.1Z
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quantum-mechanical treatment. Only one relation 
[(9d) or (11d)] connecting the evolution of the 
u and g states under exchange in A *-A 
collisions or the evolution in the + V and - V po­
tentials in A *-X collisions does not have a quan­
tum-mechanical analog. Of course a fully quan­
tum-mechanical treatment of the + V and -V po­
tentials does not give the same result as a rule. 

The establishment of the properties due to 
statistical rotational invariance and HermitiCity 
of the density matrix is nearly obvious, 16 and 
leads to the semiclassical results Sees. III A 1 and 
III A 4. One can demonstrate the last property 
(9b) concerning the invariance in the product of 
XOZ -plane reflections and the time-reversal 
operation wUh a few additional hypotheses. 15 Our 
notation will be Pb for the density matrix of the 
bath H and Z; for the Hamiltonian and the collision 
matrix of the system K for the time-reversal 
operator T for the XOZ-plane reflection operation, 
and A =KT for the antilinear operator product of 
these two operations. The following relations are 
then verified: 

APbAt = P., AHAt =H , 

and 

(26) 

The relaxation rates for the populations are given 
by 

gI .... )(f>f» =Il..P - Tr{ IJm)(Jm IZ;IJp)(Jp Ipb !;t}. (27) 

Using (26), one obtains with A IJm)(Jm IAt 
= IJm)(Jm I: 

g(.... HP/» = Ö..P - Tr{(AtZ;t Ip)(p IPbZ;)(A Im){m I)}, 

and by permuting the two antilinear operators in 
the trace 

i"'''')(/>/» = ö",p - Tr{ Ip)(P I!; Im){m I!;tPb} , 

To obtain the semiclassical equation (9b), one 
more approximation is needed viz., [Z;, Pb] =0, 
which means that both the perturbation of the bath 
and the coupling with the system are weak. This 
is true, e.g., for a structureless perturber when 
the motion is modified weakly by the collision 
process, and for elastic collisions without energy 
transfer with perturbers whose internal and ex­
ternal states are isotropie. One then deduces 

(28) 

This does not hold when the condition liw« kT is 
not fulfilled. 

B. Detailed balance 

Detailed balance with strong magnetic fields 
can be established with some modification of the 
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usual demonstration. The transition matrix T 
which is used for this purpose is defined b y8 

T Hihr)(Z; - 1) • 

We specify the initial state a of the whole system 
by the ensemble of the internal variables a andc 
the external degree of freedom (ka being the wave 
number of the ingoing wave) and, similarly for the 
final state b, so that (ab' k.) is the final state of 
the system. 

The main problem in establishing detailed ba­
lance in a strong magnetic field arises from the 
lack of invariance in the system under the time­
reversal operation. But this difficulty is easily 
overcome by noting that the Hamiltonian H of the 
system is invariant in the A operation defined in 
Sec. IIIA. 

As the mathematical properties of A and Kare 
the same, one can use the demonstration of 
Messiah8 with A instead of K. It follows that 

(29) 

which expresses the equality of the diffusion am­
plitudes for the direct process and the process 
deduced by the product of time- reversal operation 
and XOZ -plane reflection, for the same total ener­
gy E of the whole system. 

The number of particles scattered per second in 
a unit solid angle in the k. direction for a unit 
incident flux is then 

da.~ t 21T I 12 ( ) (30)dO = liv Ta~. Pb E , 
a 

where Pb = mlik./ (21T1i)3 is the final-state density 
around E. For the inverse process, one has 

daAb~ Aa ~ 1T 12 (E) (31)dO liv' Ab~A.a PAa ,• 
where v~ is deduced from vr. by the A transforma­
tion and then is just the transformation of (-Vb) in 
XOZ-plane reflections. 

Using (34) and the expUcit expressions of p(E), 
one obtains 

(32) 

The distribution of k a wave vectors being supposed 
isotropie, one obtains after angular averaging 

via Ab~Aa(E) v;aa~b(E). (33) 

The total energy E is 

E Ei (a a) + imv; Ei (a.) + imvL (34) 

where Ef(aa) and Ef(a.) are the internal energies 
of the atoms before and after the collision process 
when the interaction potential is negligibly small. 
Relation (33) is just the analog of relation (XlV­
150) of Messiah, S provided one replaces K by A. 

http:hypotheses.15
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g(ll )(oo) = g (OO}(-i-lI '" e-~"'I !2kTlg (11)(00) , 

showing that the mean transfer rate ~(g (11)(00) 
(-I-IHOO) f 0 ..rom m = to m ± 1 1S g1ven by 

g(m = 0 - m = ± 1) eh[liwl (2kT)] g(HH 001, (44) 

and is only weakly modiHed by the symmetrization 
proeedure. lll 

IV. APPROXlMATE SEMICLASSICAL THEORY J 
The basic ideas of the method have been develop­

ed by Anderson, 30 by Tsao and Curnutte,31 and by 
Omont.25

,32 They are in fact very similar to those 
adopted in the general theory of relaxation and 
eorrelation funetions, 33 and so it is not surprising 
that some of the results we derive in the following 
have a very simple interpretation within the gen­
eral framework of this theory. 

A. Relaxation matrix for large impact parameters 

The eollision matrix II is given by34 

II =Texp[- ieiHotVI2(t)e-IHot] , (45) 

where Ho is the unl!r~rbed Hamiltonian (induding 
the Zeeman term, L·S structure, ete.), V I2 (t) the 
t-parametrized interaction potential, and T the 
chronological operator. In general, a second­
order expansion of (45) in V 12 is sufficient for both 
accuracy and simplicity. But higher-order terms 
may give evidence of some peculiar properties, 
such as, for example, the lack of invariance under 
time reversal. 28 The second-order expansion 
valid for large impact parameters is given by 

(46) 

the diagrammatic interpretation of which is quite 
obvious. For A *-X collisions, (46) gives exactly 
the approximate collision matrix. For A *-A col­
lisions, owing to the peeuliar symmetry properties 
of dipole-dipole interaction it is easy to draw from 
(46) the expressions of the II I and lI 2 eollision 
matrices for each dass of atoms. 11, 25 The terms 
with an even number of interactions make up lI 1 , 

while lI 2 is composed of terms with an odd number 
of interactions. 

The asymptotic expansion of the relaxation ma­
trix (m(b, v» for a given velocity and large impact 
parameter is then obtained by retaining the terms 
in lIpliT consistent with the degree of approximation 
in (46) and after angular averaging. The relaxa­
tion matrix (m(b, v» can be completely express-
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edll,12.32· te f th F . (m rms 0 e ourler transform / T/) 
of the symmetrieal correlation function35 S (x, x' ) 
of the interaction potential V(~) given by 

S(x,x') = Tr[V(x)vt (x')] 

(47) 

with 

/(T/) = J+~ J+~ dxdx' ei'l(N')S(~,x'), (48) 
_00 .. 00 

/(0) = 1. 

The asymptotie values of the relaxation rates are 
expressed in terms of /(T/) and their imaginary 
parts (shifts of the lines) in terms of Cauchy's 
principal value of /(T/). For large impact para­
meters, the transfer rates for the population then 
take the form 

(49) 

where q is the strength of the interaction depend­
ing in reduced variables on band v, and T/ t:.E 
blv, where t:.E is the energy difference between 
the two states considered in the process. 

B. Cutoff approximation for small impact pammeters 

To calculate transfer rates one uses Eq. (49) for 
b >bc and for b<bc' the value Oll constant with b 
which may be determined by various approxi­
mations, 32,36 for example, total redistribution of 
excitation, adiabatic approximation. The deter­
mination of the Weisskopf radius bc in zero Held 
is done by writing 

llAS(b ) Oll j.L A Oll q2. (50)c

Then q~1J. A 1, where IJ. A is an angular factor which 
depends on the process under consideration. 7

,25 

For dipole-dipole interaction14 (q ce I/b2v) the 
transfer rates for population are proportional to 
the K coefficient defined bi4 

K(O) fn(q)d(~=2(j.LA)1/2 Oll. (51) 

C. Cutoff radius in nonzero field 

The Oll value may be determined either from 
physical arguments or by assuming that the K(O)­
computed transfer rate (when available) coincide 
exactly with (51). For not-too-strong magnetic 
neIds, one can admit that the Oll value is not 
modified by the effect of the field. As llAS depends 
on the field strength, the cutoff radius will be 
modified, and is given by 

llAS Oll j.LAq~/(T/c)=oll. 

http:edll,12.32
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Then bc or, equivalently, qc is given by the im­
plicU equation 

(52) 

For dipole-dipole interaction, (51) then becomes25 

<I>(B)=K(B)/K(O) Hf(1}c)]1/2[1 + F 1(1}c)!!(1}c)) , (53) 

where F 1 is the integral of !(1}) over q. The Held 
dependance of the rates of transfer with Bare 
completely determined by (52) and (53). The 
functions! and F 1 have beendetermined analytically 
for a great variety of potentials.31.37-39 For dipole­
dipole interaction, they are explicitly (the K I being 
modified Bessel functions40 

) 

!(1}) = t1}4[K~(1}) + 4K~(1}) + 3K~(1})], 

(1}) =t1}4[K (1})K1(1}) + 4K2 (1})Ko(1}) - K~(1})F 1 3 

-K~(1}) - 3K~(1})] , 

and are tabulated with<l> in Table I. For the R-6 

Van der Waals interaction, !(1}) is just a combina­
tion of exponential and powers.12,31,41 

D. Some remarks 

], Remarks on symmetrles 

As the method is based on second order per­
turbation theory, one can easily show that the 
symmetry properties of {m1) are greater in num­
ber than those predicted in the preceding seetions. 42 

Some anisotropy effects already exist, but coupling 
between tensorial components of the density ma­
trix occur in general at higher orders of the 
development.28 

2, Case oiseveral evolution irequencies with the /ield 

In general, the physical quantities of interest 
are combinations of elementary processes i whlch 
evolve at different frequencies with the field. 43 

These various processes cannot be distinguished 
in zero magnetic Held, which means that only 
one cutoff radius has to be used. We suppose, 
for example, that we have 

IIAS(b) =q2(~ II'(B =O)~ dd(O!j1}), (54) 

with 

'Edl 'EIII(O)! L III(Oll 1, 
I , J 

instead of (49). The method of Sec. IV C gives in 
this case 

TABLE I. Values of the Fourier transform of the cor­
relation function I (x) [Eq. (48) land field dependence of 
the transfer rates for R-3 dipole-dipole Interaction. The 
solution of the set of impUcit equations (52) and (53) 
giving the field dependence 1s obtained by first identi­
fying xl/1 (x)1-1/4 and the field parameter T [giving Eq. 
(52») and then computing <P through (53). 

x[ft (x)r1/( x ft (x) Ft(x) <P(T) 

0 0 0 1 1 
0.1 0.1 1.01 1.02 1.010 
0.199 0.2 1.02 1.05 1.025 
0.296 0.3 1.05 1.07 1.034 
0.393 0.4 1.07 1.08 1.039 
0.488 0.5 1.10 1.07 1.035 
0.582 0.6 1.13 1.05 1.025 
0.676 0.7 1.15 1.02 1.012 
0.771 0.8 1.16 0.974 0.991 
0.867 0.9 1.16 0.924 0.967 
0.964 1 1.16 0.869 0.942 

1.065 1.1 1.14 0.811 0.914 
1.169 1.2 1.11 0.750 0.883 
1.275 1.3 1.08 0.690 0.852 
1.386 1.4 1.04 0.631 0.819 
1.502 1.5 0.994 0.574 0.786 
1.623 1.6 0.945 0.519 0.753 
1.749 1.7 0.892 0.467 0.719 
1.882 1.8 0.837 0.419 0.686 
2.020 1.9 0.782 0.374 0.654 
2.167 2 0.726 0.333 0.621 

2.319 2.1 0.672 0.296 0.590 
2.481 2.2 0.618 0.262 0.560 
2.651 2.3 0.567 0.231 0.530 
2.829 2.4 0.518 0.203 0.501 
3.018 2.5 0.471 0.178 0.473 
3.216 2.6 0.427 0.156 0.446 
3.425 2.7 0.386 0.136 0.420 
3.646 2.8 0.348 0.119 0.396 
3.877 2.9 0.313 0.103 0.372 
4.120 3.0 0.281 0.0898 0.350 

4.380 3.1 0.251 0.0780 0.328 
4.641 3.2 0.224 0.0675 0.308 
4.941 3.3 0.199 0.0584 0.289 
5.242 3.4 0.177 0.0504 0.270 
5.560 3.5 0.157 0.0434 0.253 
5.896 3.6 0.139 0.0374 0.237 •6.261 3.7 0.122 0.0374 0.221 
6.629 3.8 0.108 0.026 0.206 
7.030 3.9 0.0947 0.0237 0.192 
7.448 4.0 0.0832 0.0203 0.179 

by defining only one cutoff radius for the whole 
process in strong field, and then insuring self­
consistency with the zero-Held treatment. 

There is nevertheless another way to evaluate 
the relaxation rates, by deHning a cutoff radius 
for each elementary process, i giving then 
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(58) 

Of course these two evaluations are not equivalent, 
and gi ve different predictions for B = 0 and B *O. 
One can only demonstrate that (56) is a majorant 
of (58) for B =O. In practical cases, calculations 
show that the predictions of (56) and (58) are not 
far from each other. 

3. Conc/usions 

The method discussed in this seetion has some 
interest, as it avoids such very complicated pro­
cedures as those involved for collisions in strong 
magnetic fields. In some cases, it gives very bad 
predictions, such as for the excitation transfer 
between two isotopes7 

•
44 (the on values are then 

strongly dependant on the energy difference tl.E 
between levels). But, as will be shown in the 
Sec. Vand paper, 4~ it gives in general a good es­
timation for the variation of the transfer rates 
for resonant collisions in strong magnetic fields. 
In spite of a systematic overestimation of the 
cross seetions and its multiform character (point­
ed out in Sec. IVD 2), it permits in some special 
cases a good understanding of the experimental 
results, and is very useful for qualitative pur­
poses. For example, the interpretation in terms 
of correlation function makes clearer the notion 
of correlation time 7'c associated with the potential. 
Varying the field is then in some aspects equiva­
lent to making a Fourier analysis of the potential. 

V. EXACT SOLUTIONS FOR A *-A AND A *-X 

The solutions of various classes of problems 
have been obtained by solving Schrl5dinger's equa­
tion with appropriate methods for J '" 1 - J =0 
resonance transitions in the case of identical 
atomsll (R-s dipole-dipole interaction) and for the 
interaction via R-e Van der Waals potential of a 
J 1 excited atom with a structureless partner.12 

•
25 

Symmetries have been checked for each (B, b, 
v, e, fP, y) value used in numerical integration. 
They are at each step in exact agreement with the 
predictions of Sec. 11 and of Sec. IV for large im­
pact parameters and ultimately provide tests of 
äccuracy and methods for considerable reduction 
of computation time. 

A. Anticrossing of energy levels 

Some results of the numerical studies need to 
be stressed. In zero magnetic Held, the collision 
process is equivalent in some aspects to the for-

FIG. 1, Correlations between transition probabilities 
and potential-energy curves during the collision. The 
situation corresponds to R- 6 anisotropie Van der Waals 
interaction with a sign such that Er; > E" in zero magnetic 
field. The field belongs to the collision plane and is 
parallel to the second bisector plane of (b, ;) (0 ="11', 
<p =!11'). The strength of the field corresponds to a 
Zeeman splitting of about 2r-.,t, and the impact para­
meter is about four times the Weisskopf radius. At 
</J -+rr (t = - 00) the system is in the m 0 substate. 
The Po ± t fuH curves represent the probabilities of Hnd­
ing the system in the m =± 1 substates during the 
collision. The dashed curves (arbitrary units) represent 
the cigenvalues of the time-dependent Hamiltonian. At 
</J ±-t 11' they correspond to the purely Zeeman case. 
Potential-energy curves anticrossing partly explain 
the strong value of POt at the end of the collision 
process, but the increase of POt (</J) is notwelliocalized 
near this point. 

maUon of a quasimoleeule. For a J =1 atomic 
state, the associated molecular states are n 
states and one Z state. Due to the symmetry of 
the electrostatic interaction, the two n states are de­
generate for all internuclear distances. The evo­
lution of the n state "perpendicular to the collision 
plane" is not coupled to the evolution of the II and 
Z states belonging to the collision plane.7 More­
over, the potential-energy curves are invariant 
in the X - -X transformation. 

When a magnetic Held is applied to the system, 
this fundamental Kramers degeneracy no longer 
exists. Potential-energy curve anticrossing ap­
pears as in Fig. 1, where the curves are no longer 
invariant in the X - -X transformation. This re­
sults from the breaking of Kramers degeneracy 
due to the Zeeman Hamiltonian. The spectrum is 
then characteristic of a Zeeman effect at large 
internuclear distances and of a Stark effect for 
X", O. Correlation studies of potential-energy 
curves and transition probabilities between Zee­
man sublevels have been done.46 They reveal that 
the presence of anticrossings is not always corre­
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FIG. 2. R -3 dipole-dipole interaction between identical 
atoms. Field variations (logarithmic scale) of the 
m =O-m = ±1 and m= ±1-m='F1 transfer rates for 
the whole 1 + 2 ensemble of atoms (reduced to the zero­
field value). The parameter T is just gJj.!BBp l/2 v- 3/2 , 

where p is proportional to the oscillator strength of the 
resonance transition. The predictions of Eq. (53) using 
the symmetrical correlation function for the potential 
are represented by + for the M"'O- M= ± 1 and by. 
for the M =± 1- M ='F 1 transfer rates. 

lated with a strong increase in the transition prob­
ability between the unperturbed atomic sublevels. 
But on the other hand the very special shape of the 
energy diagram is connected with the existence of 
strong anisotropy effects at the end of the colli­
sion process between, e.g., the populations of the 
m =+1 and m - 1 Zeeman sublevels of the atoms 
(Fig~ 1). These effects do not exist in zero mag­
neUc field. Such effects are also properly taken 
into account by an asymptotic expans ion of the 
(:lIl) relaxation matrix28 of third order in V. These 
features are of particular interest for beam­
beam experiments for which very strong aniso­
tropy effects can be predicted. They also present 
a very strong analogy with the behaviors observed 
in collision-induced rotational transitions between 
molecules and atoms for odd values of the varia­
tions Aj of the rotational quantum number.47 

B. Results 

The field variations of the Zeeman transfer 
rates (reduced to the zero-field value) are given 
in Figs. 2 and 3 for, respectively, R-g dipole­
dipole interaction and R-a Van der Waals interac­
tion. The proper definitions of T are given in the 
figure captions. For R-g dipole-dipole interac­
tlon, T is proportionalll to Bv- s12 and for R-a in­
teraction to Bv-fl/s •12 Physically the parameters 
are proportional to the product AETJh and directly 
measure the importance of the resonance defect 
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1 5 
FIG.3. R-6 anisotropicVanderWaals interaction. 

Field variations (reduced to the zero-field value) of the •
m"'O-m '" ±1 and m = ±1-m='F1 transfer rates. The 
parameter T is j ust g" j.!BBP1/5 V - 6/5, where p is the 
anisotropy parameter of the potential related to the 
product of the polarizability of the perturbers and to the 
mean value of (r 2) for the J 1 excited atom: (a) 
m=±1-m='fl, (b)m=O-m= 1, and (c)m O-m=1. 
The situation corresponds to a zero-field position of 
potential-energy curves such that E E < Eu. The inverse 
situation E E > Eil is obtained by interchanging only the 
signs of m in (b) and (c) because of scaling laws for the 
problem. 

compared to the width of the Fourier transform 
of the correlation function of the potential, which 
for these sIowly varying potentials is approxi­
mately the inverse of a mean collision time. 

1. WS potential 

The semiclassical (m=O- m= ± 1) transfer rates 
are identical for aU field values, a phenomenon 
connected with the (u, g) separability of Sch rö­
dinger's equation. In zero field, the rates are 
velocity independent for a semiclassical straight­
Une trajectory formulation.48 

• 49 This is almost 
true in a quantum-mechanical approach to the 
problem.49 In a nonzero magnetic field, the rates 
are velocity dependent via the T parameter.7. U. 50 

In Fig. 2 we have plotted the predictions obtained 
with the method of Sec. IV. At some field values 
this leads to a 20%-100% overestimation of the 
transfer rates, especially for m= ± 1 -m=:;: 1 
transitions. For m=O-m =± 1 transitions the ap­
proximation is not to~ bad and gives a first esti­
mate of the variations with the field. 

2. R-6 potential 

The semiciassical (m =0 -m =± 1) transfer rates 
are dtlferent as a result of the action of the mag­

http:problem.49
http:formulation.48
http:number.47


COLLISIONAL EXCITATION20 

netic field during the eollision proeess.12 
• 28 As 

the effeet depends on the sign of the anisotropie 
part of the potential, Le., on the relative positions 
of the ~ and TI potential-energy eurves during the 
coUision, this is a way of determining the sign of 
the anisotropie part. Experimental verifications 
of this behavior for Hg* (6 3Pl )-rare gas collisions 
in 200-kG magnetic neIds have been reported29 

and have shown qualitative agreement with pre­
dictions, 12.28 allowing one to determine the quali­
tative distribution of potential-energy eurves for 
such collisions at thermal energy. Experimental 
verifieation of detailed balance has also been re­
ported.29 

VI. CONCLUSION 

Some theoretical aspects of the use of high mag­
netic neIds for probing inelastie-collisional ex­
citation transfer have been described for thermal 
collisions in a vapor, in conditions of broad Une 
exeitation of the atoms. It will be of interest to 
extend the analysis to the ease of monomode nar­
row-laser-line excitation for the study of weakly 
inelastic velocity-ehanging collisions/1 as the 
magnetie field seems to provide a eonvenient tool 
for testing the velocity kernel and the memory 
function. 

APPENDIX: RELATIONS BETWEEN SEMICLASSICAL 

COLLISION MATRICES 


I. Explicit form of the interaction potential 

The {u; (x)} coefficients associated with a given 
eollision proeess (cp8y) satisfy the following re­
lations: 

u~<x) =u:~ (x) =u: 2 (- x) =i (1 + ix)2 /r , 

U~l (x) 0, u~(x) =-1/-16, 

with x =vt/b, and are characteristic of the assum­
ed symmetries of the potential. The explicit form 
of the {o; (eptlyx)} in (3) is then given with 0;* 
= (-)q U: q (the Hermiticity of V) by 

Ui(cp8yx) =te-2iY [(1 +cos2 t1)cos 2(l/! - cp) sin28 

+2i sin2(l/!- cp)cos6], 

U~(cp8yx) =- ~e-IY[cos2(tjI- cp)eos6+coslJ 

+isin2(4'-cp)}, 

U~(ep8YX) t,f6 [sin2 6cos2(<jI - ep )+sin2 6 - i]' 

where 1/1 = arctan x is the angle of rotation of the 
internuclear axis during the collision. When there 
is no L S decoupling by the field, Schrödinger's 
equation in the interaction picture is just given by 
Eqs, (5)and (6). 
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2. Relations between semiclassical collision matrices 
:E(..,I'''') 

Using the projection of (5) on a standard Oz 
basis and the prorerties of {U~} coefficients, one 
deduces several relations between collision ma­
trices associated with various orientations of the 
collision planes relative to the Held. Of course, 
we do not consider the transformations that leave 
U(2) invariant but associated with the same eolli ­
sion process either by changing only the set (cp8y) 
of Euler angles into an equivalent one of different 
determination 8 or by changing the sense of the 
collis ion frame. This does not lead to any new 
relations, and P is now'the representation of P 
defined in (6) in the standard basis. 

a. Transformation ep-ep + 1T, P(x, 1T +ep, 8, 1') 
=P(x, cp, 8,1'), The two physical trajectories are 
connected with a parity operation, leaving the 
magneÜc field unehanged. This together with (5) 
gives 

~(ep, e, 1') =1.;(1T+CP, e,Y) . (Al) 

b. Transformation (cp6y)- (1T- cp, 6,- 1', -x). 
There U~ (lT- cp, 8, - 1', -x) =U~ (cp6, yx)*, As the 
representations of urT<- ) operators are real 
matrices in a standard basis, one deduces that 

P(- x, lT- cp, IJ, 1') =P<x, cp, e, - 1')* , 

and after elementary algebra 

~(cp6y)=:t(1T- cp, e, - 1') (A2) 

or equivalently with (Al) 

~(cp, 8,1') =i(21T- cp, 8, - 1'), 

These relations correlate the results of two colli ­
sions with trajectories corresponding in XOZ­
plane reflections at reversed time x. Note that in 
each transformation the field is not invariant but 
only in the product. 

c, OZ rotations. The rotation R z (ß) around the 
Z axis leads to 

Rz (ß)P(xq:iJy)R: (ß) =P(x, cp, 8,1'- ß) , 

then to 

~ (cp, 8, I' - ß) =R" (ß)~(CP 6y)R! (ß) , (A3) 

expressing the fact that the physical problem does 
not depend on all three angles, but only on ep and B. 

d. ZO~-plane rejlections. With € the vector of 
polar angle l; in the XOY plane and T(~) the matrix 
representation of the operator associated with 
ZO~-plane reflections, one has 

T(l;)T:Tt(O=(- )k+qe2jqt;T~q, 

leading to 

T(l;)P(xep8y)T t m=P(x, cp, e, I' +2 ~)* • 

http:ported.29
http:proeess.12
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Aigebraic manipulation of Eq. (15) then produces 

L;(±, cp, 8, ')I) =T(~)L;('f, cp, 8, ')I +2~)* T t m, (A4) 

where the (±) refer to the cases in which the po­
tential is +P or -Po Equation (A4) permits the 
relation of solutions of Schrödinger's equation for 
two opposite potentials. Physically, this means 
that within the above-mentioned approximations, 
(A4) offers the possibility of obtaining collision 
matrices for potentials of opposite anisotropy 
in the case of A *-X collisions (inverse relative 
positions of the potential-energy curves) when the 
solution ls known for one slgn. For A*-A colll ­
slons between identical atoms Schrödinger's equa­
tion is invariant under atom exchange. Knowing 
the solution of (5) for the symmetrie states, for 
example one can solve the collision problem com­
pletely by obtaining from (A4) the evolution 01 the 
antisymmetrie states under exchange. 
e. 	 Unitarity. From V =Vt , one deduces 

L; • L; t == I . (A5 ) 

3. Comparison to the zero-field case 

Assuming statistical spherical symm:etry, one 
can express the collision matrix in zero magnetic 
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